Termometro elettrico

termometri elettrici sono trasduttori di temperatura che sfruttano i fenomeni di variazione di resistenza, o la generazione di una forza elettromotrice, per effetto di una variazione di temperatura.

Il trasporto di cariche elettriche nei materiali è un processo le cui modalità possono in parte dipendere dalla temperatura. Ne segue che sono stati sviluppati altri strumenti basati sulla conversione delle variazioni di temperatura in cambiamenti di una grandezza elettrica che ben si adatta a problemi di monitoraggio e controllo di sistemi complessi.

Generalmente nelle applicazioni industriali, i termometri elettrici sono i più diffusi, in quanto: è possibile realizzare trasduttori miniaturizzati con tempi di risposta molto brevi, permettono un monitoraggio a distanza della temperatura, ed inoltre, perché permettono la registrazione e l’amplificazione del segnale elettrico.

Tipologie di termometri elettrici

I termometri elettrici utilizzati nella pratica comune sono:

  • termometri a resistenza;
  • termometri a semiconduttore o termistori;
  • termocoppie.

Termometri a resistenza

termometri a resistenza sono una tipologia di termometri elettrici, semplici elementi resistivi realizzati utilizzando platino, nichel, leghe nichel-rame, eccetera. Detti materiali sono stati scelti per l’accuratezza, la precisione e la stabilità che consentono di ottenere, ed inoltre mostrano una sensibilità di valore positivo.

Sir Humprey Davy nel 1821 osservò che il coefficiente di resistività dei materiali metallici risultava dipendente dalla temperatura e, basandosi su detta osservazione, nel 1871 Sir William Siemens propose per primo l’utilizzo di un conduttore in platino come trasduttore di temperatura.

È interessante osservare la corretta scelta del materiale confermata dal fatto che i termometri al platino sono tutt’ora utilizzati nella definizione della scala termometrica nel campo di temperatura -190 °C e +660 °C. Il platino, ad ogni modo, è il materiale più costoso utilizzato in termometria e per lungo tempo è stato impiegato solamente nella realizzazione dei termometri primari, chiamati SPRT (Standard Platinum Resistance Thermometer) per la definizione della scala termometrica.

Tuttavia, il miglioramento delle tecniche di costruzione ha consentito una drastica riduzione della quantità di platino necessario per il sensore, rendendo possibile una diffusione più ampia degli IPRT (Industrial Platinum Resistance Thermometer) in ambito industriale.

I principali vantaggi connessi alla utilizzazione del platino in tali termometri metallici sono:

  1. il platino è chimicamente inerte;
  2. ha un elevato valore della temperatura di fusione, il che implica come conseguenza un ampio campo di misura;
  3. può essere ottenuto con grado di purezza elevato, il che determina una modesta dispersione delle curve di taratura rispetto a quella di graduazione;
  4. presentano modesta non linearità.

I termometri a variazione di resistenza possono essere schematizzati come costituiti da un elemento sensibile che mostra un cambiamento della resistenza elettrica in presenza di una variazione della sua temperatura.

La catena di misura è inoltre costituita da una unità di elaborazione che converte la variazione di resistenza in variazione di tensione, oppure di intensità di corrente continua, ed infine, da uno strumento terminale che provvede alla registrazione ed alla presentazione degli andamenti del segnale in uscita.

Termometri a semiconduttore o termistori

termistori sono termometri elettrici realizzati mediante sinterizzazione di polveri di semiconduttori quali ossidi di manganese, cristalli di silicio e di germanio drogati, di nichel e di cobalto; sono caratterizzati da un elevato valore, sia negativo che positivo, del coefficiente di resistività.

La sensibilità molto forte dei termistori permette di leggere la variazione di resistenza direttamente con un ohmetro. La dipendenza della resistenza dalla temperatura, espressa dal coefficiente di resistività, può assumere sia valore positivo (termistori di tipo PTC) che negativo (termistori di tipo NTC). A tal proposito, occorre evidenziare che:

  1. i termistori di tipo PTC, avendo la peculiarità di variare il valore della resistenza di circa 3 ordini di grandezza per un campo di variazione della temperatura di pochi decimi di grado, sono utilizzati come switch termici;
  2. mentre i termistori di tipo NTC trovano larga utilizzazione come sensori di temperatura.

La resistenza di un termistore varia, in funzione della temperatura, secondo la seguente legge:

\[R_T=R_0e^{k\left(\frac{1}{T}-\frac{1}{T_0}\right)}\]

dove:

  • \(R_T\) è la resistenza alla temperatura in esame;
  • \(T\) è la temperatura in esame;
  • \(R_0\) è la resistenza alla temperatura di riferimento;
  • \(T_0\) è la temperatura di riferimento;
  • \(k\) è una costante che vale tra 3400÷3900 dipendentemente dal tipo di termistore.

Vedi anche: Studio della variazione di resistenza per effetto della temperatura

Termocoppie

Una termocoppia è un trasduttore di temperatura (in differenza di potenziale) il cui principio fisico di funzionamento si basa principalmente su tre effetti:

  1. effetto Seebeck;
  2. effetto Peltier;
  3. effetto Thomson.

Effetto Seebeck – L’effetto seebeck è generato dalla diffusione di elettroni attraverso l’interfaccia di due metalli isotermici a contatto sottoposti ad un gradiente di temperatura: quello che riceve elettroni diventa (all’interfaccia) negativo, mentre quello che fornisce elettroni diventa positivo. Il campo elettrico che si viene così a generare impedisce l’ulteriore migrazione degli elettroni quando viene raggiunto un valore sufficientemente alto della differenza di potenziale.

Poiché l’intensità delle forze di diffusione degli elettroni dipende dalla temperatura della giunzione, il potenziale elettrico sviluppato fornisce l’indicazione della temperatura stessa.

Il campo di utilizzo di una termocoppia è compreso tra -183 °C e 2500 °C, invece l’accuratezza è compresa tra ±0,1% e ±1% del valore misurato.

Il potenziale elettrico sviluppato viene in genere misurato realizzando una seconda giunzione e rilevando la differenza di potenziale \(E_0\) su di un ramo del circuito elettrico. Una relazione empirica che si può utilizzare è la seguente:

\[E_0=C_1(T_1-T_2)+C_2(T_1^2-T_2^2)\]

dove \(C_1\) e \(C_2\) sono costanti termoelettriche che dipendono dai materiali impiegati per realizzare le giunzioni, e \(T_1\), \(T_2\) sono le temperature delle giunzioni.

Una delle due giunzioni viene utilizzata per misurare la temperatura incognita \(T_1\), mentre l’altra giunzione viene mantenuta ad una temperatura di valore noto \(T_2\).

La curva di graduazione di una termocoppia non è lineare.

L’effetto Seebeck non comporta passaggio di corrente nel circuito in quanto il potenziometro esegue la misura della differenza di potenziale con impedenza infinita.

Effetto Peltier – Occorre tener presente che l’effetto Peltier causa un raffreddamento del giunto a temperatura superiore, mentre riscalda quello a temperatura inferiore, per cui i due giunti si trovano a temperature diverse rispetto a quelle che si avrebbero se non circolasse corrente.

L’effetto Peltier è reversibile, ossia, se in un circuito bimetallico isotermo si fa circolare una corrente continua, dipendentemente dal suo verso, uno dei due giunti raffreddandosi sottrae calore all’ambiente, mentre l’altro riscaldandosi lo cede all’ambiente stesso. Questo effetto è assai modesto, per cui la differenza di temperatura nello stesso giunto nel caso di assenza o presenza di corrente è trascurabile.

Effetto Thomson – L’effetto Thomson è causato dall’esistenza di un gradiente di potenziale nel conduttore dello stesso materiale se esso non è isotermo.

Pertanto si potrebbe ottenere una termocoppia anche senza saldare due metalli diversi, ma portando a temperatura diversa due punti di uno stesso conduttore; anche questo effetto è di modesta entità ed è di due o tre ordini di grandezza inferiore a quello Seebeck o Peltier, per cui è possibile trascurarlo.

Leggi delle termocoppie

Prima legge

Un circuito di una termocoppia deve prevedere almeno due materiali e due giunzioni.

La relazione funzionale \(E_0=f(T_1-T_2)\) risulta non lineare sperimentalmente, per cui:

\[E_0=e_{B/A}T_1+e_{A/B}T_2\]

dove \(e_{B/A}\) è il potenziale di giunzione per unità di temperatura della giunzione stessa quando l’intensità di corrente scorre dal materiale B al materiale A; \(e_{A/B}\) è il potenziale di giunzione per unità di temperatura della giunzione stessa quando l’intensità di corrente scorre dal materiale A al materiale B; poiché:

\[e_{B/A}=-e_{A/B}\]

si ottiene:

\[E_0=e_{B/A}(T_1-T_2)\]

Seconda legge

La tensione \(E_0\) fornita da una termocoppia dipende solamente dalla differenza delle temperature delle giunzioni \((T_1-T_2)\) mentre è del tutto indipendente da qualsiasi altra temperatura presente nel circuito.

Detto principio assicura che la tensione fornita da una termocoppia è indipendente da qualsiasi gradiente termico presente lungo i fili costituenti la termocoppia.

Terza legge

Se un terzo materiale C viene introdotto in un ramo del circuito di materiale A e le due nuove giunzioni A/C e C/A sono mantenute alla stessa temperatura, la \(E_0\) non subisce variazioni

Infatti la \(E_0\) è data da:

\[E_0=e_{B/A}T_1+e_{A/C}T_i+e_{C/A}T_j+e_{A/B}T_2\]

poiché: \(e_{B/A}=-e_{A/B}\) ed \(e_{A/C}=-e_{C/A}\) si ottiene:

\[E_0=e_{B/A}(T_1-T_2)+e_{A/C}(T_i-T-j)\]

pertanto se è lecito ritenere che \(T_i=T-j\), l’effetto dovuto alla presenza di un terzo materiale si può ignorare e considerare nullo.

Quarta legge

Se un terzo materiale C viene introdotto in una giunzione A/B, e le due nuove giunzioni A/C e C/B sono mantenute alla stessa temperatura \(T_1\), la \(E_0\) non subisce variazioni.

La presenza di un terzo materiale in uno dei giunti si verifica generalmente quando la giunzione tra i due materiali A e B viene realizzata mediante saldatura o brasatura di un altro materiale C. In tal caso la \(E_0\) è data da:

\[E_0=e_{B/C}T_1+e_{C/A}T_1+e_{A/B}T_2\]

poiché \(e_{C/A}=e_{C/B}+e_{B/A}\), si ottiene dalla precedente equazione:

\[E_0=e_{B/A}(T_1-T_2)\]

Quinta legge

Se una termocoppia con i giunti alle temperature \(T_1\) e \(T_2\) genera una \(E_{0(1-2)}=f(T_1-T_2)\), ed un’altra termocoppia dello stesso tipo, sottoposta a temperature \(T_2\) e \(T_3\) genera una tensione \(E_{0(2-3)}=f(T_2-T_3)\), la tensione \(E_{0(1-3)}\) è data da:

\[E_{0(1-3)}=f(T_1-T_3)=E_{0(1-2)}+E_{0(2-3)}\]

La quinta legge delle termocoppie risulta particolarmente utile quanto la temperatura \(T_2\) del giunto freddo è nota, ma diversa da 0 °C; valore della temperatura in funzione della quale sono, in generale, riportate le tabelle delle termocoppie.

Sesta legge

Se una termocoppia, che utilizza due materiali A e C, sottoposta alla differenza delle temperature \(T_1\) e \(T_2\) genera una \(E_{0(A/C)}\), ed un’altra termocoppia che utilizza due materiali C e B, sottoposta alla stessa differenza di temperature \(T_1\) e \(T_2\) genera una \(E_{0(C/B)}\), una termocoppia A/B, sottoposta alla stessa differenza di temperature \(T_1\) e \(T_2\) genera una \(E_{0(A/B)}\) pari a:

\[E_{0(A/B)}=E_{0(A/C)}+E_{0(C/B)}\]

Quest’ultima legge può essere utilizzata quando si conoscono le curve di calibrazione dei due diversi materiali rispetto al medesimo materiale di riferimento,  ad esempio il platino. Risulta quindi non necessario calibrare preventivamente tutte le possibili combinazioni di termocoppie ottenute con diversi materiali per stabilirne la loro sensibilità.

Realizzazione del giunto di riferimento

Poiché le termocoppie rilevano la differenza di temperatura esistente tra il giunto di riferimento (\(T_2\), chiamato anche giunto freddo) e la temperatura ignota dell’altro giunto (\(T_1\), chiamato anche giunto caldo) a contatto con l’ambiente o il sistema di cui si necessita misurare la temperatura; occorrerà che la \(T_2\) sia mantenuta ad un valore costante e noto con l’accuratezza sufficiente per scopi prefissi nella campagna delle misure.

Un metodo per realizzare il giunto di riferiemento si avvale di un vaso Dewar nel quale viene introdotto continuamente ghiaccio fondente (e rimossa l’acqua in eccesso) al fine di imporre la temperatura di solidificazione dell’acqua con una incertezza di ±0,1 °C. Se si decide di utilizzare questo metodo sarà necessario porre attenzione alle temperature delle connessioni della termocoppia con lo strumento di misura: infatti, se esse risultano essere a temperatura diversa si avrà una generazione di f.e.m.

Un altro metodo per la realizzazione del giunto di riferimento sfrutta il principio dell’effetto Peltier: il giunto freddo è posizionato all’interno di un contenitore nel quale è presente acqua satura di aria mantenuta a 0 °C; la parte esterna del contenitore viene raffreddata utilizzando l’effetto Peltier.

Materiali termoelettrici per termocoppie

Le caratteristiche metrologiche che i materiali per termocoppie devono avere per poter essere utilizzati in modo soddisfacente sono:

  • elevato valore della sensibilità nel campo di misura;
  • deriva di entità modesta per valori della temperatura prossimi alla portata massima del trasduttore;
  • compatibilità con la strumentazione a disposizione;
  • costo contenuto.

I materiali che trovano ampia utilizzazione in campo industriale sono:

  • termocoppie realizzate con metalli base (rame, ferro, manganese, eccetera) con portata massima fino a 1000 °C;
  • termocoppie realizzate con metalli nobili (platino, iridio, eccetera) con portata massima fino a 2000 °C;
  • termocoppie realizzate con metalli refrattari (tungsteno, tantalio, molibdeno, eccetera) con portata massima fino a 2800 °C.

Tipologie di termocoppie

  • Tipo K: Chromel/Alumel, dove il Chromel (Ni-Cr) è il positivo, non magnetico, indicato con il colore giallo; l’Alumel (Ni-Al) è il negativo, materiale magnetico, indicato con il colore rosso. La resistenza elettrica dio un cavo di Chromel è circa 2,5 volte quella di un cavo di Alumel di identiche dimensioni. Il loro intervallo di misura va da -200 °C a 1260 °C. La sensibilità è di circa 41 µV/°C.
  • Tipo J: Ferro/Costantana, dove il Ferro (Fe) è il positivo, fortemente magnetico, indicato con il colore bianco; la Costantana (Cu-Ni) è il negativo, non magnetico, indicato con il colore rosso. La resistenza di un cavo di Costantana è circa 5,5 volte quella di un cavo di Ferro di identiche dimensioni. Il loro intervallo di misura va da -40 °C a 750 °C. Le termocoppie tipo J sono caratterizzate da un basso costo ed una notevole sensibilità (51,7 µV/°C), ma non possono essere utilizzate sopra i 760 °C a causa di una transizione magnetica che fa perdere loro la calibrazione.
  • Tipo T: Rame/Costantana, dove il Rame (Cu) è il positivo, non magnetico, indicato con il colore blu; la Costantana (Cu-Ni) è il negativo, non magnetico, indicato con il colore rosso. La resistenza di un cavo di Costantana è circa 30 volte quella di un cavo di Rame di identiche dimensioni. Presentano caratteristiche simili alle termocoppie in Ferro/Costantana (tipo J), con una sensibilità di 48,2 µV/°C. Utilizzabili nell’intervallo di temperature comprese tra -200 °C e 400 °C.
  • Tipo E: Chromel/Costantana, come il Chromel (Ni-Cr) è il positivo, non magnetico, indicato con il colore viola; la Costantana (Cu-Ni) è il negativo, non magnetico, indicato con il colore rosso. La resistenza di un cavo di Costantana è circa 0,7 volte quella di un cavo di Chromel di identiche dimensioni. Hanno una elevata sensibilità (68 µV/°C) che le rende adatte ad applicazioni a bassa temperatura (anche criogenica). Sono inoltre amagnetiche.
  • Tipo N: Nicrosil (Ni-Cr-Si) (positivo)/Nisil (Ni-Si) (negativo). L’intervallo del campo di misura è compreso tra i 650 °C e i 1250 °C. La loro stabilità e la resistenza all’ossidazione a caldo le rendono un ottimo sostituto a basso costo delle termocoppie a base di platino (tipi B, R, S) per le misure di alta temperatura. Progettate per essere una evoluzione del tipo K, sono oggigiorno sempre più popolari. Le termocoppie B, R, S, sono tutte composte da metalli nobili ed hanno caratteristiche simili. Sono le più stabili fra le termocoppie, ma la loro bassa sensibilità (10 µV/°C) ne limita l’uso a misure di alte temperature (maggiori di 300 °C).
  • Tipo B: Platino(30%)-rodio (positivo)/Platino(6%)-rodio (negativo). Adatte per alte temperature, fino a 1800 °C. A causa della particolare relazione tensione-temperatura che le caratterizza, forniscono la stessa differenza di potenziale a 0 °C ed a 42 °C. Sono perciò inutili al di sotto dei 50 °C.
  • Tipo R: Platino(13%)-rodio (positivo, indicato con il colore nero)/Platino (negativo). Adatte per alte temperature fino a 1600 °C. Sono amagnetiche. La resistività del Platino-Rodio è circa 2 volte quella del Platino.
  • Tipo S: Platino(10%)-rodio (positivo)/Platino (negativo). Adatte per alte temperature fino a 1600 °C. Grazie alla loro particolare stabilità, sono utilizzate come standard di calibrazione per il punto di fusione dell’oro (1064,43 °C).

La procedura di realizzazione di una termocoppia deve prevedere la realizzazione di un avvolgimento attorno ai due materiali termoelettrici; la scelta dei materiali dei fili costituenti, dipende sia dalla risposta dinamica desiderata, che dalle caratteristiche corrosive dell’ambiente in cui la termocoppia andrà ad operare.

Ad esempio, per rapide variazioni di temperatura il diametro dei fili dovrà essere molto piccolo e dotato di guaina protettiva isolante, di spessore tale da assicurare il minore ritardo temporale possibile. Mentre, in condizioni ambientali di esercizio corrosive, la guaina protettiva dovrà essere di spessore maggiore e di materiale opportuno al fine di non recare alcun danneggiamento al giunto caldo.

Tipologie di giunto caldo

Il giunto caldo può essere del tipo: non protettocollegato a massa oppure isolato. Ovvero può essere, o meno, in contatto elettrico con la guaina metallica.

Le termocoppie con il giunto di misura non protetto sono usualmente utilizzate in ambienti non corrosivi nei casi in cui sia necessario avere catene di misura con elevata banda passante.

I principali vantaggi delle termocoppie con giunto isolato sono:

  1. il circuito della termocoppia è a massa flottante;
  2. il giunto caldo risulta più affidabile ossia capace di continuare a funzionare anche in presenza di cicli termici;
  3. eventuali difetti nell’isolamento elettrico possono essere rilevati mediante misura della resistenza elettrica di uno dei fili della termocoppia rispetto alla guaina.

Detti vantaggi sono ottenuti a discapito di un aumento del tempo di risposta ed una maggiore difficoltà di fabbricazione, e quindi, di un maggiore costo della termocoppia.